
© 2021 IEEE. This is the author’s version of the article that has been published in IEEE Transactions on Visualization and
Computer Graphics. The final version of this record is available at: 10.1109/TVCG.2021.3114863

KG4Vis: A Knowledge Graph-Based Approach for Visualization
Recommendation

Haotian Li, Yong Wang, Songheng Zhang, Yangqiu Song and Huamin Qu

United States

Great Britain

China
Russia

Germany

Japan
France

South Korea

Italy
Australia

0

20

40

60

80

100

120

O N Q P AF AI AH AG

0

5k

10k

15k

20k

25k

30k

35k O
N
Q
P
AF
AI
AH
AG

1960 1970 1980 1990 2000 2010
2

3

4

5

6

7 Pakistan
Bhutan
Sri Lanka
Bangladesh
India
Nepal

Discretized
Continuous

Features

Categorical
Features

Visualization
Design
Choices

Feature Extraction Visualization Recommendation

DFCF CF

DD D D

VV V

Knowledge Graph
Construction

Embedding
Learning

Embedding-based
Inference

Rule Generation

H
uns

S
aracens

M
alians

Italians
B
yzantines

M
ayans

B
urm

ese
Portuguese
B
erbers

Franks
B
ritons

Indians
Persians
Ethiopians
K
oreans

M
alay

K
hm

er
Incas
M

agyars
S
panish

C
elts

A
ztecs

Teutons
V
ikings

C
hinese

M
ongols

Turks
S
lavs

Japanese
V
ietnam

ese
G

oths

Huns
Malians

Byzantines
Burmese

Franks
Indians

Ethiopians
Malay

Magyars
Celts

Teutons
Chinese

Turks
Vietnamese
Portuguese

Slavs

0

0.2

0.4

0.6

0.8

1

0-4 5-14 15-24 25-34 35-49 50-59 60-69 70-84 85+
0

5

10

15

20

Col11
Col3

Jan 11
2015

Jan 25 Feb 8 Feb 22 Mar 8 Mar 22 Apr 5

−1000

−500

0

d
c
a
b

0 200 400 600 800 1000

0

50

100

150 rtree
box2d
jsts-quadtree
p2-grid
rbush-bulk
rbush-incremental
box-intersect
brute-force
p2-sweep
simple-quadtree
jsts-strtree

Bar Values in a column is not sorted

Box Values are not evenly distributed

Line The column is not the only one in dataset

Scatter Values in a column are numerical

Histogram Outlier exists in a column (3Std)

Data Columns

Fig. 1. This figure illustrates the overall workflow of KG4Vis. We extract features from existing dataset-visualization pairs and construct
a knowledge graph (KG). Then the embeddings of entities and relations in the KG are learned. Based on the embeddings, we conduct
inference on a new dataset and finally recommend multiple visualizations. Also, various rules are extracted based on the embeddings
and presented together with recommended visualizations to improve the interpretability of visualization recommendation.

Abstract— Visualization recommendation or automatic visualization generation can significantly lower the barriers for general users
to rapidly create effective data visualizations, especially for those users without a background in data visualizations. However,
existing rule-based approaches require tedious manual specifications of visualization rules by visualization experts. Other machine
learning-based approaches often work like black-box and are difficult to understand why a specific visualization is recommended,
limiting the wider adoption of these approaches. This paper fills the gap by presenting KG4Vis, a knowledge graph (KG)-based
approach for visualization recommendation. It does not require manual specifications of visualization rules and can also guarantee
good explainability. Specifically, we propose a framework for building knowledge graphs, consisting of three types of entities (i.e., data
features, data columns and visualization design choices) and the relations between them, to model the mapping rules between data
and effective visualizations. A TransE-based embedding technique is employed to learn the embeddings of both entities and relations
of the knowledge graph from existing dataset-visualization pairs. Such embeddings intrinsically model the desirable visualization
rules. Then, given a new dataset, effective visualizations can be inferred from the knowledge graph with semantically meaningful rules.
We conducted extensive evaluations to assess the proposed approach, including quantitative comparisons, case studies and expert
interviews. The results demonstrate the effectiveness of our approach.

Index Terms—Data visualization, Visualization recommendation, Knowledge graph

1 INTRODUCTION

Data visualization can effectively facilitate data exploration, insight
communication and decision making in various application domains
such as business, scientific research, social media and journalism
[31, 47]. However, transforming the input data to an effective visu-
alization requires users to be familiar with both the input data and
visualization tools. Many existing visualization tools have a steep learn-
ing curve [13]. For example, the popular data visualization packages
including D3 [5], Vega [37] and ggplot2 [48] require users to know

• H. Li is with the Hong Kong University of Science and Technology and
Singapore Management University. A part of this work was done when he
was a visiting student supervised by Yong Wang at Singapore Management
University. E-mail: haotian.li@connect.ust.hk

• Y. Wang and S. Zhang are with Singapore Management University. Yong
Wang is the corresponding author. E-mail: yongwang@smu.edu.sg and
shzhang.2021@phdcs.smu.edu.sg

• Y. Song and H. Qu are with the Hong Kong University of Science and
Technology. E-mail: {yqsong, huamin}@cse.ust.hk

Manuscript received xx xxx. 201x; accepted xx xxx. 201x. Date of Publication
xx xxx. 201x; date of current version xx xxx. 201x. For information on
obtaining reprints of this article, please send e-mail to: reprints@ieee.org.
Digital Object Identifier: xx.xxxx/TVCG.201x.xxxxxxx

programming languages (e.g., JavaScript and R) as well as the syntax of
these packages. Those methods are often tedious and time-consuming
for generating visualizations. Though dedicated visualization tools like
Microsoft Excel or Google Spreadsheets are able to create standard
charts by using templates, users still need to manually specify data
attributes, and the mapping between them and the visual encodings.
Also, these dedicated visualization tools offer limited expressiveness
and customization. To address these challenges, researchers have pro-
posed a series of techniques and tools to automatically generate or
recommend effective visualizations for input datasets [42, 60].

Existing techniques and tools for automated visualization design
and recommendation mainly consist of two categories [19]: rule-based
approaches and machine learning (ML)-based approaches. Rule-based
approaches, such as APT [27], SAGE [35], Show Me [28], SeeDB [40]
and Foresight [10], take into account the underlying data characteristics
(e.g., statistical measures) and further leverage visualization principles
or perceptual heuristics to automatically generate visualizations for
analysts. Such rule-based approaches are also often augmented by sup-
porting data variable selection and faceted browsing of recommended
charts [49, 50]. These rule-based approaches are straightforward and
intuitive to understand. However, they intrinsically suffer from limita-
tions. For example, these approaches need an explicit list of rules and
heuristics that often rely on expert judgment. It is difficult and tedious

1

ar
X

iv
:2

10
7.

12
54

8v
3

 [
cs

.H
C

]
 2

6
D

ec
 2

02
1

https://doi.org/10.1109/TVCG.2021.3114863

to compile a complete rule list due to the necessity of significant manual
effort. Also, the rules may not be generalizable to different datasets or
visualization choices. With the increase of the input data dimensions,
there will be explosive combinations of visualization recommendations.

ML-based approaches (e.g., VizML [19], Data2Vis [13], and Deep-
Drawing [45]) often train a machine learning model (especially a deep
learning model) to directly learn the visualization rules from examples
of dataset-visualization pairs. For instance, Data2Vis [13] leverages an
LSTM-based neural translation model, which is trained on a Vega-Lite
visualization corpus, to achieve the automatic generation of data visu-
alizations. There has been an increasing trend to apply deep learning
techniques to visualization generation and recommendation [42, 60],
since they do not require users to manually specify the rules of visual-
ization recommendation. The contexts of the data and visualization are
implicitly encoded by the trained models. However, these deep learn-
ing models often work as a black box [18]. Thus, it is often difficult
for users, to understand why a specific visualization is recommended,
which further affects their trust in the recommended visualizations.

Motivated by the limitations of prior studies, we aim to achieve
visualization recommendation that requires no manual specifications
of visualization rules and also guarantees good explainability of the
recommendations to general visualization users. It is a non-trivial task
and little research has been conducted in this direction.

In this paper, we propose KG4Vis, a Knowledge Graph-based ap-
proach for Visualization recommendation. Similar to ML-based ap-
proaches for visualization recommendation, our approach also distills
the rules for visualization design from existing examples such as the
dataset-visualization pairs collected in VizML [19]. Knowledge graphs
are widely used in the natural language processing field for different pur-
poses such as question answering and product recommendation [24,57]
and have shown great potential in modeling the relationship between
different entities (i.e., knowledge). Such knowledge is often seman-
tically understandable to human users. Inspired by this, we explored
how a knowledge graph can be constructed to model visualization rules
and further apply it to achieve effective visualization recommenda-
tions. Specifically, we extract an extensive list of data features for each
dataset and further build a knowledge graph based on three types of
entities: data features, data columns and visualization design choices.
The directed links between two types of entities indicate different se-
mantic meanings, e.g., “(One feature) is a data feature of (a specific
data column)”, “(One data column) is visually encoded by (a specific
visualization design choice)”. Then, we employ TransE [4] to learn
the embeddings of both relations and entities by using the dataset-
visualization pair examples. These embeddings essentially encode the
visualization generation rules presented in the examples. Given a new
dataset input, our approach can directly infer the relevant rules and
recommend effective visualizations for the dataset, which intrinsically
provides two desirable advantages. First, users can trace back to the rel-
evant rules to understand why a specific visualization is recommended,
thereby enhancing their trust in the visualization recommendations
(explainability) and improving their knowledge of visualization princi-
ples. Also, the whole recommendation process is data-driven and fully
automated (no manual specification of visualization rules).

We investigated the effectiveness and usability of our approach
through both quantitative and qualitative evaluations. Specifically, to
verify the knowledge graph model choice, we compared the visual-
ization recommendation accuracy of knowledge graph models with
that of other knowledge graph models. Further, we conducted in-depth
interviews with 12 visualization experts to assess whether our recom-
mendation rules and recommended visualizations are meaningful to
human users. We also showcased the visualization recommendation
rules and the recommended visualizations to provide support for the
effectiveness of KG4Vis.

In summary, the major contributions of this paper are as follows:
• We present KG4Vis, a novel knowledge graph-based approach

for visualization recommendation, which is essentially a data-
driven approach and explainable to human users. To the best
of our knowledge, this is the first time that a knowledge graph
is employed to model visualization principles and recommend

effective visualizations.
• We conduct extensive evaluations, including qualitative compar-

isons with other models, case studies on different types of charts
and in-depth expert interviews, which demonstrates the effective-
ness and explainability of our approach.

• We summarize the detailed lessons we have learned during the
development of KG4Vis, which, we hope, can benefit subsequent
work on applying knowledge graphs in the visualization field.

2 RELATED WORK

Our related work can be categorized into three groups: visualization
recommendation, knowledge graph-based recommendation and knowl-
edge graph embedding.

2.1 Visualization Recommendation
Visualization has been widely used for exploratory data analysis and
decision making in various domains including stock trading [39], on-
line education [23] and urban planning [15]. However, most existing
tools for creating visualizations heavily rely on users’ manual specifica-
tions [19]. To facilitate visualization usage by users with no background
of visualization, many researchers have recently explored the automated
visualization recommendation using rule-based methods and machine
learning (ML)-based methods [19, 51].

Rule-based visualization recommendation methods are mainly based
on manually-specified rules for mapping data to visual encodings
according to previous studies on human perception on visualiza-
tions [2, 9, 21]. Representative studies include APT [27], SAGE [35],
Show Me [28] and Voyager2 [50]. Though rule-based visualization
recommendation methods have been widely studied their disadvantages
are also obvious. Since the rules are proposed or summarized by hu-
mans, the effort of constructing a thorough list of rules is enormous
and the following update of rules can be hard [34].

On the contrary, ML-based approaches have been investigated for
visualization recommendation to address the limitation of rule-based
methods. For example, DeepEye [26] and Draco [30] have been pro-
posed to augment existing rules proposed by experts with learning the
preference of visualizations and then ranking recommended visual-
izations. Hu et al. [19] and Qian et al. [34] fed features of datasets
to Neural Networks (NNs) to infer how the datasets are represented
by visualizations. These models have advanced the performance of
visualization recommendations. However, these methods often use a
deep learning approach and the “black-box” nature of these models
makes it hard to interpret the recommended results.

In this paper, we aim to propose a visualization recommendation
method based on a knowledge graph to leverage the advantages of
both rule-based and ML-based methods. It can recommend satisfactory
visualizations and also make the reasons behind the recommendations
transparent to users by providing explainable recommendation rules.

2.2 Knowledge Graph-based Recommendation
Incorporating knowledge graphs (KGs) in recommender systems is an
emerging research direction in recent years [16]. KGs are structured rep-
resentations of human knowledge and consist of entities and relations
between entities [20]. KG-based recommendation algorithms have two
major advantages: effectively modeling different latent relations be-
tween entities [16] and providing explainable recommendation results
based on the graph structure [41]. According to Guo et al. [16], there
are mainly three types of methods for KG-based recommender systems,
embedding-based methods [54, 57], path-based methods [52, 59] and
unified methods [41, 44].

Among these three types of methods, our recommendation algorithm
is closer to embedding-based methods. We explicitly learn the embed-
dings of entities and relations in our KG and conduct recommendations
based on the embeddings.

2.3 Knowledge Graph Embedding
Knowledge graph embedding (KGE) represents the entities and rela-
tions in a KG with low-dimensional embedding vectors so that various

2

© 2021 IEEE. This is the author’s version of the article that has been published in IEEE Transactions on Visualization and
Computer Graphics. The final version of this record is available at: 10.1109/TVCG.2021.3114863

entities and relations can be easier to handle in downstream tasks [43],
such as link prediction [38, 46] and triplet classification [4, 46].

According to prior studies [17, 43], KGE methods can mainly be
categorized into 3 classes: translational models, tensor decomposition
models and neural models. Translational models aim to model the
relations between two entities as a translation in space. The most rep-
resentative method under this category is TransE [4]. It assumes that
the embedding of a tail entity should be the sum of the embedding of
a head entity and a translation vector which is the relation between
them. A more detailed introduction to TransE is provided in Section 3.
Following TransE, a series of translational methods have been proposed.
For example, TransR [25] represents relations in different spaces and
conducts translation with a relation after projecting entities to the corre-
sponding space. RotatE [38] employs rotation in the complex space to
represent relations between entities. Another class of KGE models aims
to extract the embeddings of entities by applying tensor decomposition
to model the graph structures [17], for example, RESCAL [32] and
DistMult [53]. Recently, many neural models have also been proposed
for KGE including SME [3] and ConvE [12].

In our paper, due to its efficiency and intuitiveness, an improved
version of the widely recognized embedding approach (i.e., TransE [4])
is applied in our model to learning the embedding vectors of entities
and relations in our KG.

3 BACKGROUND: TRANSE
As introduced in Section 2.2, a KG represents human knowledge as a
directed graph consisting of entities and relations. Each entity is repre-
sented as a node in the graph and each relation is an edge type. In the
directed graph, each edge indicates the existence of a relation between
two entities, i.e., the head entity and the tail entity. Thus, it is common
to use a triplet, (head entity,relation, tail entity), to represent an edge,
which can also be denoted as (h,r, t) in short. However, if a KG is
represented with symbolic triplets, the manipulation can be hard [43].
Thus, researchers propose knowledge graph embedding (KGE) to rep-
resent entities and relations in KGs as continuous embedding vectors.
TransE [4] is one of the most representative KGE methods with great
efficiency and intuitiveness. In this paper, we leverage an approach
based on TransE to learn the representations of various data features and
visualization designs, as well as the relations between data features and
visualization designs, which are further used to recommend appropriate
visualizations. The basic idea of TransE is that the relation r between
a head entity h and a tail entity t can be approximately represented by
a translation from h to t. Suppose the embedding vectors of h,r, t are
h,r, t, the relationship among them can be written as

h+ r≈ t, (1)

which is also illustrated in Fig. 3(a). Thus, the scoring function that
measures the possibility of a triplet’s existence is defined as

g(h,r, t) =−||h+ r− t||1/2, (2)

where a larger score indicates that the triplet (h,r, t) tends to be plausible
and the distance can be calculated by using either L1 or L2 distance.
With the scoring function of triplets, TransE applies a margin-based
ranking criterion as the loss function in embedding learning:

L = ∑
(h′,r,t ′)∈S′

ReLU(γ +g(h′,r, t ′)−g(h,r, t)), (3)

where γ > 0 is a margin parameter and S and S′ denotes the set of
training triplets and the set of negative triplets, respectively. Intuitively,
we can consider the loss function which aims to make the difference
between scores of training triplets and scores of negative triplets as
large as possible. Here the negative triplets are generated by a random
replacement of the head entity or the tail entity in a training triplet. In
the training process, TransE applies gradient descent to minimize the
loss and optimize the learned embeddings.

4 METHOD

KG4Vis consists of four major modules: feature extraction, KG con-
struction, embedding learning, and embedding-based inference, as

illustrated in Fig. 1. First, we extract both data features and visualiza-
tion design choices from dataset-visualization pairs (Section 4.1). Then,
we propose building knowledge graphs to model the mapping from
datasets to visualizations. Specifically, we define three types of entities
(i.e., data features, data columns and visualization design choices) and
the relations between them (Section 4.2). Further, we leverage the
classic knowledge graph embedding approach TransE to represent the
entities and relations with embedding vectors (Section 4.3).

The final step of KG4Vis is to infer visualization design choices for a
new dataset, where explicit visualization rules are also generated (Sec-
tion 4.4).

4.1 Data Features and Visualization Design Choices
Inspired by VizML [19], we also extract data features of a dataset by
quantifying the characteristics of its individual columns, where each
column of the dataset is referred to as a data column in this paper.
Specifically, we extract 81 data features introduced in VizML [19].
These features include 50 continuous features and 31 categorical fea-
tures. The data features of data columns are categorized into three
classes: the data type of the data column (Types), the statistical features
of values in the data column such as distribution and outliers (Values)
and the name of the data column (Names). A detailed feature list is
available in the supplementary material.

To visualize a given data column, the key visualization design
choices are the type of the visualization and the axes where each data
column is encoded. In our method, we limit our scope of recommended
visualizations to six common types of 2-D visualizations: bar charts,
box plots, heatmaps, histograms, line charts and scatter plots. In the
rest of the paper, we will use bar, line, scatter, box, heatmap, and
histogram to refer to them respectively for simplicity. Since these vi-
sualization types supported in our method are 2-D visualizations, the
axes where the data is encoded are limited to horizontal and vertical
axes, which are denoted as x- and y-axis in the rest of our paper.

4.2 Knowledge Graph Construction
We build knowledge graphs (KGs) to model the complex mapping
from data to visualizations. According to our survey, there are no
existing studies on constructing knowledge graphs for visualization
recommendations. We propose defining four types of entities and three
types of relations among entities to delineate the mapping from a dataset
to appropriate visualizations. By leveraging a large number of existing
dataset-visualization pairs in real practice, our knowledge graphs can
capture the widely-used visualization design principles. An overall
description of the knowledge graph construction is shown in Fig. 1 and
an example is shown in Fig. 2.

0 0.2 0.4 0.6 0.8 1
−4

−3

−2

−1

0

1

2

3 y

Data type:
Quantitative

Position: X-axis

Features of
Column x

Mean of
Values: in the
p-th interval

Outlier:
1.5IQR

Type: Scatter

Position: Y-axis

Features of
Column y

Number of
Values: in the
q-th interval

x
y

0
-0.28

0.01
0.41

...

...
0.96
-0.32

0.98
-0.02

1
1.12

Dataset-visualization Pair Extracted Features

Column x

Type: Scatter

Type:
Scatter

Data type:
Quantitative

Mean of
Values: in the
p-th interval

Outlier:
1.5IQR

Number of
Values: in the
q-th interval

Knowledge Graph

Column y

Position:
X-axis

Position:
Y-axis

Fig. 2. This figure shows an example of the transformation from a
dataset-visualization pair to a part of the KG. Only a part of features and
entities are shown. Red nodes represent visualization design choices.
Blue nodes represent data columns. Green and yellow nodes represent
discretized data features and continuous data features, respectively.

Definition of Entities. The first step of building our KG is to define
the entities. Since the purpose of KG is to represent the relationship
between data features, data columns and visualization design choices,
they are naturally considered as entities in the KG. Generally, an entity
in KG represents a categorical value, for example, a person or a place.
Thus, a data column, a visualization design choice or a categorical data
feature can be directly represented as an entity. However, defining the
entities for continuous data features is challenging, since continuous

3

https://doi.org/10.1109/TVCG.2021.3114863

features are hard to be handled by KG. One possible method is to
assign each concrete value of a continuous data feature to an entity, for
example, we create two entities to represent that the length of a data
column is 5 and the length of a data column is 6, respectively. However,
the number of entities will inflate and then the KG will become sparse
since the number of possible concrete values is large and the number
of edges between an entity of a value and entities of data columns will
be small. Learning the embeddings of a sparse KG with an enormous
number of entities can consume lots of computational power and the
learned embeddings can be of low quality [58]. Thus, we propose to
divide each continuous data feature into different intervals, and regard
each discretized continuous data feature with a specific value interval
as an entity in the KG.

There are many commonly used discretization strategies such as
KMeans discretization, uniform discretization and quantile discretiza-
tion. However, they suffer from a common pitfall: these discretization
methods only consider the distribution of values of all data points
and cannot take extra information (e.g., predictive attributes) into
consideration. Thus, inspired by Ming et al. [29], we apply a dis-
cretization method based on the minimum description length princi-
ple (MDLP) [14] to discretize the continuous data features. With MDLP,
the visualization type is able to be used as extra criteria when discretiz-
ing continuous data features. Besides the consideration of visualization
types, it can automatically decide how many intervals are generated
based on the distribution of data and the minimum size of each interval.
This is another advantage of MDLP, especially compared with other
approaches like KMeans, where the number of intervals should be
explicitly given. With the discretized continuous data features gen-
erated by MDLP, we treat each interval of a feature as an entity. In
summary, we overall have four classes of entities, visualization design
choices (EV), discretized continuous data features (EDF), categorical
data features (ECF) and data columns (ED). The detailed list of entities
is available in Table 1.

Definition of Relations. After introducing four classes of entities,
we further defined three classes of relations as shown in Table 1. First,
we have a class of relations that connect data columns to visualization
design choices (RD→V) and represent “(one data column) is visually
encoded with (a specific visualization design choice)”. To be specific,
there are two relations that belong to this class: 1) a data column
(often together with other data column(s)) is visualized as a specific
visualization type, e.g., bar; 2) a data column is encoded on the x-axis
or y-axis. The complete list of this type of relations and corresponding
entities is in the first section of Table 1. The second and third classes of
relations both describe the mapping from data features to data columns.
Thus, the semantic meaning of relations in these two classes can be
described as “(one feature) is a data feature of (a specific data column)”.
The second class of relations are those linking categorical data features
to data columns (RCF→D). For this class of relations, we group the
categorical data features according to their semantic meanings and
construct 13 relations, for example, “the general data type of (one data
column) is (categorical)”. A detailed list of relations in this class is
in the second section of Table 1. The third class of relations aim to
model the mapping from discretized continuous data features to data
columns (RDF→D). We define a relation for each continuous feature
and there are 50 relations in total, which is equal to the number of
continuous features as described in Section 4.1. An example is “the
number of unique values in (one data column) is (between 0 and 30)”.

After defining the entities and relations, we extract triplets from
existing dataset-visualization pairs. These triplets serve as the edges
that link different entities to form a graph. For a data column d with its
data feature set Fd , a set of triplets are extracted as {(fi,ri,d)| fi ∈ Fd},
where ri ∈ RCF→D∪RDF→D is the corresponding relation from fi to
d. Similarly, for the set of visualization design choices Vd of the data
column d, we extract another set of triplets {(d,rn,vn)|vn ∈Vd}. Thus,
all the triplets associated with the data column d can be denoted as
{(fi,ri,d)| fi ∈ Fd}∪{(d,rn,vn)|vn ∈ Vd}. By combining the triplets
associated with all the data columns, we gain the knowledge graph that
will be used for visualization recommendation.

Table 1. This table shows the definition of relations and their related
entities. The first section presents RD→V and EV . The second section of
the table illustrates RCF→D and ECF . The third section shows RDF→D and
EDF . IQR is the interquartile range and Std is the standard deviation.

Class Relations Corresponding Entities

RD→V
Visualization type of the column is bar, box, heatmap, histogram, line,

scatter
The column is encoded on x-axis, y-axis

RCF→D

The general data type of the data in
the column is

categorical, quantitative, temporal

The specific data type of the data in
the column is

string, integer, decimal, datetime

The name of the data column con-
tains

“x”, “y”, “time”, digit, whitespace,
“$”,“C”, “£”, “U”

Outlier exists in the column accord-
ing to criteria

1.5IQR rule, 3IQR rule, 3Std rule,
(1%, 99%) rule

Values are normal at (p < 0.01), (p < 0.05)
Values are sorted/are monotonic/
are in linear space/are in log space/
are unique, missing value is in the
column, the column is the only col-
umn in dataset

{relation} is true, {relation} is
false (relation refers to a relation
in the left.)

The column name starts with upper case, lower case

RDF→D
Continuous features (e.g., number
of unique values in the column)

Value of the continuous feature is
in the 1st, ..., m-th interval (m >

1) (e.g., number of unique values
in the column is in the 4th interval)

4.3 Embedding Learning
In this section, learning to represent entities and relations by embedding
vectors with TransE is introduced. The major advantage of using
embeddings to represent entities and relations is that the manipulation
of them in KG [43] is convenient, which greatly benefits our subsequent
inference and explicit rule generation.

In our approach, we adopt an improved TransE with self-adversarial
negative sampling (denoted as TransE-adv) [38] due to its efficiency
and intuitiveness [43]. The major advantage of adopting self-adversarial
negative sampling is that it can effectively improve the learning effi-
ciency by considering the current embedding model and eliminating
obviously false triplets. According to Sun et al. [38], each negative
sample is assigned a weight which indicates its probability of being
true when using the current embeddings. The weight is calculated as

w
(
h′,r, t ′

)
=

exp(αg(h′,r, t ′))
∑(h′i,r,t

′
i)∈S′ exp(αg(h′i,r, t

′
i))

, (4)

where (h′,r, t ′) is a negative sample, S′ is the collection of negative
samples, α is the temperature of sampling [1] and g is the scoring
function. Based on the weight of negative samples, a negative sampling
loss function is applied in the training of TransE-adv, which is as
follows:

L =− logσ (γ +g(h,r, t))

− ∑
(h′,r,t ′)∈S′

w
(
h′,r, t ′

)
logσ

(
−g(h′,r, t ′)− γ

)
, (5)

where σ is the Sigmoid function and γ is the margin.
The overall procedure of embedding learning in our approach is as

below. First, the embeddings of entities and relations are initialized.
Then in each step, we randomly sample a batch of training triplets and
generate negative samples accordingly. Then a weight value is assigned
to each negative sample according to Equation 4. With the batch of
training triplets and negative triplets, the loss of current embeddings is
calculated as Equation 5. Finally, the loss is used for the optimization
of embeddings in each step.

4.4 Inference with Embeddings
In the previous step, the embeddings of entities and relations in the
KG are learned. In this section, we introduce the method of leveraging

4

© 2021 IEEE. This is the author’s version of the article that has been published in IEEE Transactions on Visualization and
Computer Graphics. The final version of this record is available at: 10.1109/TVCG.2021.3114863

these embeddings to infer how to visually encode a new data column
which has multiple data features.

As indicated by Equation 1, the tail entity’s approximate embed-
ding equals the sum of the embedding of a given head entity and the
embedding of the relation between them. Based on this assumption,
we propose a method to infer the final visualization design choice of
a data column in a new dataset. We first extract rules indicating the
mapping from data features to visualization design choices. Then, we
aggregate all the rules to decide the final visualization design choices.
Here each rule has a structure like “If the data column has {a data
feature}, then the data column can be represented by {a visual de-
sign choice}”, where the data feature refers to a categorical feature
or a discretized continuous feature. For the rest of this paper, each
rule will be denoted as “a data feature→ a visual design choice” for
simplicity. In each rule, the part before “→”, i.e., “a data feature”, is
also called the condition of the rule. To derive such kind of rules from
KG with embeddings, for each data feature entity fi ∈ EDF ∪ECF , we
conduct translations twice. The first translation is to approximate the
embedding of an imaginary data column dim which is only connected
by fi. The embedding of dim is computed as fi + r j, where r j is the
embedding of the relation connects fi to dim. The second translation is
to infer how dim will be visually represented under a specific relation
rtarget ∈ RD→V by computing fi + r j + rtarget . After two translations,
we can extract a rule as fi→ vn with a score defined as follows:

g fi→vn =−||fi + r j + rtarget −vn||, (6)

which indicates how much vn is preferred given fi. More specifically,
the rule also reflects the possibility that fi→ vn is correct. Then, by
using the rules, we can calculate the average score of all the relations
that link a data feature fi ∈ Fnew to a design choice vn as follows:

g(dnew,rtarget ,vn) =
1
|Fnew| ∑

fi∈Fnew

g fi→vn . (7)

This computation can also be viewed as an aggregation of all rules
whose conditions are fulfilled by the current data column. Then, for
every visualization design choice, the aggregation is computed to get
the score of recommending it. After obtaining scores of all possible
design choices, we compare them and select the visualization choice
with the highest score as the inferred visualization choice for dnew. For
example, when we decide whether dnew should be encoded on which
axis, g(dnew,raxis,vx−axis) and g(dnew,raxis,vy−axis) can be computed
with Equation 7. If g(dnew,raxis,vy−axis)> g(dnew,raxis,vx−axis), then
we recommend to encode dnew on y-axis.

After inferring the visualization type and the axis that will be used for
each data column, we need to collectively consider the inference results
of all the columns of a dataset and further assemble valid visualizations
for the dataset. Thus, we need to propose a set of post-processing rules
according to the visualization grammar (e.g., Vega-lite and Plotly) to
guarantee that valid visualizations are generated. For example, in Plotly,
among all the six visualization types, box plots and histograms only
require specifications on one axis while other types requires specifica-
tions on both x-axis and y-axis. Thus, if any data column in a dataset
is inferred to be visualized in histogram or box plots, all columns will
be visualized on either x- or y-axis. Otherwise, we plot all columns
according to their inferred axes. Since our method will assign a score
to different visualization choices (e.g., bar and line), it is possible for us
to recommend several different visualizations with top k visualization
choices according to their scores.

5 EVALUATION

This section introduces the evaluation of our method from the follow-
ing perspective: evaluation setup, quantitative evaluations and qual-
itative evaluations. Qualitative evaluations consist of case studies,
expert interviews and a comparison between generated and empiri-
cal rules. The source code of KG4Vis, the visualization corpus used
in the evaluations and the supplementary material are available in
https://kg4vis.github.io/.

(a) (b)

Fig. 3. This figure illustrates (a) TransE in 2-D space and (b) our inference
method. In (a), two points, h and t, represent the embeddings of head
and tail entities while vector r denotes the embedding of relation between
two entities. The red arrow with two heads shows the distance ||h+r− t||
between h+ r and t. In (b), each point is a 2-D embedding of an entity.
f D
1 - f D

2 and fC
1 - fC

2 represent two discretized continuous data features
and two categorical data features of a new data column. r1 - r4 are
relations connecting data features to data columns. vn is a visualization
design choice connected by rtarget . v f s are the estimated embeddings
of visualization design choices. Red arrows with two heads denote the
distances between embeddings. g represents the scoring function.

5.1 Evaluation Setup

The evaluation settings include the generation of our visualization
corpus, the pre-processing and hyper-parameter setting for embedding
learning, and the visualization generation settings.

Visualization Corpus. We used the VizML corpus [19] for our
evaluations. It contains around 120k dataset-visualization pairs. In
this corpus, each visualization is generated by Plotly in JavaScript.
According to VizML [19], users may slightly modify their datasets and
create duplicated visualizations, so they randomly sample one dataset
of each user to generate a corpus for evaluation. We followed the
same sampling strategy of VizML and created a new corpus for our
evaluation, which covers the datasets of six visualization types (i.e., bar,
box, heatmap, histogram, line and scatter). Note dataset in this paper
refers to a table consisting of multiple columns. The final corpus has
88,548 dataset-visualization pairs and 309,335 data columns in total.

Embedding Learning Setup. To learn the embeddings of entities
and relations, we randomly selected 70% of our corpus as the training
set. Then, we extracted features and conducted several steps of pre-
processing. First, we removed invalid data columns, e.g., data columns
without a visualization type. Then, we dealt with extreme values by
using the 5% quantile and the 95% quantile of each continuous feature
to replace values less than the 5% quantile or larger than the 95% quan-
tile respectively. After pre-processing, a KG can be constructed on the
training set by extracting entities, relations and triplets, as introduced
in Section 4.2. To extract entities representing continuous data features,
MDLP was applied to discretize each continuous data feature to several
intervals. When applying MDLP, we set the minimum proportion of
samples to split an interval to 0.1 and the minimum proportion of sam-
ples in an interval to 0.05 (i.e., at most each continuous feature can be
split into 20 intervals). The reason why we selected these two values is
that we need to strike a balance between performance and intuitiveness.
When there are more intervals for a data feature, the recommendation
results may be better. However, an excessive number of intervals for a
data feature can be harmful to the interpretability of rules. Thus, we
adopted the values above according to our empirical observation.

In our KG, there are in total 216,851 entities, 56 distinct relations and
9,679,463 triplets. Then, TransE-adv was applied on the KG to learn
the embeddings for inference. All the embedding vectors of entities and
relations have 1,000 dimensions following a previous study [38] and
were initialized using a uniform distribution. In the training process,
the batch size of each epoch was 1,024 and the number of training steps
was 30,000. The initial learning rate was set as 0.001. Following the
study by Sun et al. [38], we chose Adam [22] as the optimizer and L2
distance was applied in all the scoring functions in Equations 4 - 7.

5

https://doi.org/10.1109/TVCG.2021.3114863
https://kg4vis.github.io/

Bar Values in a column is not sorted
Commemorative Substantive Significant

0

20

40

60

80

100

Passed Both Chambers
Reported by Committee
Passed One Chamber
Public Law
No Action

0 -- 2 2--4 4--6 6--8 8--10 10--12 12--14
0

2

4

6

8

10

12 change in pop (experimental 1)
change in snail population (control 1)
change in population (control 2)
change in pop (experimental 2)Bar All values in a column are unique

Jan-12
M

ar-12
M

ay-12
Jul-12
S
ep-12

N
ov-12

Jan-13
M

ar-13
M

ay-13
Jul-13
S
ep-13

N
ov-13

Jan-14
M

ar-14
M

ay-14
Jul-14
S
ep-14

N
ov-14

Jan-15
M

ar-15
M

ay-15
Jul-15
S
ep-15

N
ov-15

Jan-16
M

ar-16
M

ay-16
Jul-16
S
ep-16

N
ov-16

150

200

250

300

Buying Rate
Selling Rate

100 200 300 400 500

0.08

0.1

0.12

0.14

RandomForestClassifier,
max_features='sqrt'2
RandomForestClassifier,
max_features=None2

Line Values are monotonic

Line The data type of a column is decimal

Line The column is not the only one in dataset

5 10 15 20

100

150

200

Speed

0 0.2 0.4 0.6 0.8 1
−4

−3

−2

−1

0

1

2

3 yScatter Values in a column are numerical

Scatter Outlier exists in a column (1.5IQR)

A

20

40

60

80

Propelled Distance (cm)

5

6

7

8

9

Box Values are not evenly distributed

Box The entropy of values is large

A

a b

c

e

d

f

g h

Propelled Distance (cm)

Fig. 4. This figure shows a gallery of recommended visualizations in (a)-(h) and related rules with high scores. The listed rules are only a small
subset of all rules applied in the recommendation of corresponding visualizations. Due to limited space, we only present rules of 4 visualization
types, bar charts, box plots, line charts and scatter plots.

5.2 Quantitative Evaluation
To evaluate our embedding learning method, we conducted experiments.
As stated in Section 4.1, we have two major tasks: 1) the inference of
visualization types and 2) the inference of axis to be encoded on for a
data column. To make our evaluation reliable, we conducted a 5-fold
cross-validation and report results of different methods.

Metrics. In our inference method, each visualization design choice
is given a score and then ranked in descending order. Thus, to compre-
hensively evaluate our method, we utilized two widely used metrics,
the average rank of correct design choices (denoted as MR) and the
proportion of correct visualization design choices ranked in the top
two inferred design choices (denoted as Hits@2) [4] to evaluate the
performance of visualization types. Since the inference on the axis is
binary (i.e., either x- or y-axis), we evaluated it by accuracy.

Baseline Models. The baseline embedding learning models used
in our quantitative evaluation were TransE and RotatE [38]. TransE
here refers to TransE without self-adversarial negative sampling. The
reason why we selected TransE without self-adversarial negative sam-
pling as a baseline is that we would like to confirm self-adversarial
negative sampling can advance the performance of embedding learning
by comparing TransE-adv with TransE. Another baseline model is Ro-
tatE. By comparing TransE-adv with RotatE, we would like to make
sure TransE-adv can achieve a satisfactory performance compared to
one of the state-of-the-art KGE models. As introduced in Section 2.3,
RotatE models the relationship between two entities as a rotation in the
complex space and has a different scoring function which is defined as
g(h,r, t) =−‖h◦ r− t‖, where ◦ indicates element-wise product. The
inference method of KG4Vis can still apply to the embedding learned
by RotatE by replacing the scoring function of TransE with that of
RotatE.

Results. According to the results in Table 2, TransE-adv outper-
forms other embedding learning models on both visualization type
inference and axis inference.

Table 2. This table shows the result of our quantitative evaluation on
embedding learning methods. The best results are in bold. Overall,
TransE-adv outperforms others. Among all metrics, a smaller MR indi-
cates better performance while larger accuracy and Hits@2 are better.

Axis Visualization Type
Accuracy MR Hits@2

TransE-adv 0.7350 1.9567 0.7489
TransE 0.7214 1.9718 0.7445
RotatE 0.7193 1.9608 0.7458

5.3 Qualitative Evaluation
In this section, we evaluate KG4Vis by conducting case studies, expert
interviews and comparing the generated rules with empirical rules.

5.3.1 Case Study
Fig. 4 shows several recommendation results and rules to illustrate the
effectiveness of our approach and how rules can guide visualization
recommendation. These recommended visualizations and rules were
rated highly in our expert interviews. Rules in Fig. 4 are related to four
types of visualization: scatter, box, line and bar. To make the original
rules more understandable for general users, we translated those rules
with complex statistical meanings to straightforward descriptions. For
example, “the entropy of values is large→ box” is used to describe that
box plots are often used when the entropy of the data column values
falls in the discretized interval that corresponds to a large entropy. When
dealing with the rules with simple categorical features, we followed the
structure introduced in Section 4.4 to generate rules such as “values in
a column are numerical→ scatter”, which means “if the values in the
data column are numerical, then the data column can be represented
by scatter”.

Scatter Plots. The first two rules regarding scatter are straightfor-
ward. As suggested in [28], scatter should be recommended when two
columns of data are both numerical. It is also a common practice to
use scatter to identify anomalies, which verifies our rule “if outliers
are detected in a column with the 1.5IQR rule, then the column can
be visualized by scatter”. This rule also matches conclusions in an
empirical study [36], as will be further discussed in Section 5.3.3.

Box Plots. Then we present two rules related to box plots. They
both reflect how values in a data column are distributed. These rules
are out of expectation but make sense. It has been seldom proposed that
the values represented by box plots are not evenly distributed. However,
it is a reasonable rule. Box plots are often used to help discover and
present the characteristic of data distribution. In most cases, we care
more about the distribution of data when it is not evenly distributed.
Thus, as our examples in Fig. 4(c)-(d) demonstrate, it is suitable to
recommend box plot to users when the data is not evenly distributed.
The other rule “the entropy of values is large→ box” indicates that In
other words, the values represented by box plots are often disordered.
This rule is also reasonable as it is not quite meaningful to inspect
values’ distribution if these values are too concentrated.

Line Charts. The next three rules show conditions to recommend
a line chart as the visualization type for a data column. Since line
charts are often applied on time series data, it is natural that the column
representing time is monotonic and the data type of other columns is

6

© 2021 IEEE. This is the author’s version of the article that has been published in IEEE Transactions on Visualization and
Computer Graphics. The final version of this record is available at: 10.1109/TVCG.2021.3114863

decimal. Also, according to [36], line is the best choice to represent
the correlation between two series of data. Thus, the column which is
supposed to be visualized by line charts should not be the only column
in the dataset. These rules are also applied on both our generated
visualizations in Fig. 4(e)-(f).

Bar Charts. The last two rules for bar charts are also intuitive.
When we use bar charts, an axis often represents a series of categor-
ical data [28] like countries or brands. It is quite common that these
categorical values are unique, for example, the values on x-axes of
our generated visualizations in Fig. 4(g)-(h). Furthermore, as the val-
ues shown in blue bars and red bars in Fig. 4(g) suggest, the values
represented by bars can often be unsorted.

These rules and visualizations show that our method can derive
meaningful rules in a data-driven manner and then recommend appro-
priate visualizations. Furthermore, the unexpected but reasonable rules
for box plots demonstrate that our method has the potential to help re-
searchers identify implicit rules which map data features to appropriate
visualization design choices.

5.3.2 Expert Interviews
To further verify the effectiveness of recommended design choices and
the correctness of generated rules, we conducted expert interviews.

Tasks. In our expert interviews, we designed three tasks to evaluate
the quality of rules and recommended visualizations.

1. We presented the experts with the top five rules of each visualiza-
tion type and asked them to give each rule a score ranging from
1 (the least reasonable) to 5 (the most reasonable).

2. The experts are presented with 30 datasets and the corresponding
top two recommended visualizations by our approach. They were
asked to give each recommended visualization a score ranging
from 1 (the least reasonable) to 5 (the most reasonable). Here
only the visualization type and the arrangement of x- and y-axes
were required to be considered since other design choices (e.g.,
the position of the legend, color usage) are not in our scope.

3. We presented 30 datasets to experts and let them select the top two
visualization types from all six types supported by our approach
to visualize the current dataset.

Among three tasks, Task 1 was designed to verify the correctness of
individual rules on visualization types and Task 2 aimed to evaluate
the overall quality of recommended visualizations including the visual-
ization type and axes where data columns are encoded. Task 3 was a
supplementary task to collect experts’ preferred design choices. In all
tasks, the sequences of visualization types or datasets were randomized.

Datasets. In our expert interviews, we presented 30 rules and 30
datasets to experts in total. In the selection of rules presented in Task
1, we first pruned rules of the same fi and only kept the strongest
rule of each feature entity. To be more specific, after the pruning,
we only kept rules with the top five highest scores in { fi → vn|vn ∈
all visualization types} for a specific fi. Then, we presented the top
five rules for each visualization type to participants for verification.
For Task 2 and Task 3, we randomly sampled 5 valid datasets for each
visualization type. Here a valid dataset is defined as a dataset that can
be correctly rendered by Plotly. In the questionnaire of our interview,
we followed the study by Hu et al. [19] to show a screenshot of the first
10 rows and the first 10 columns of each dataset to participants. For
each dataset, we presented the top two recommended visualizations to
experts since the mean rank of correct visualization types is about 2
according to Table 2. The recommended visualizations were exported
as images with resolutions of 700×450.

Participants and Procedure. We invited 12 researchers (4 females,
agemean = 25.42, agestd = 1.93) who have conducted research in data
visualization for at least 1 year. Due to the current COVID-19 pandemic,
all expert interviews were conducted through online meetings. The
length of an expert interview was about 1 hour. Before starting the
interview, we collected experts’ consent for collecting their feedback
and recording audio. Each expert interview started with a 5-min brief
introduction to our entire project. After that, experts were asked to
finish the three tasks. For Task 2 and Task 3, to ensure that experts
provide effective feedback for each question, they were only allowed to

submit their answers on each dataset after 10 seconds. After finishing
all three tasks, experts were asked to provide general comments on our
approach including the advantages and disadvantages.

Feedback on the Generated Rules. Overall, our generated rules
are appreciated by experts. An expert commented that “some rules
are inspiring” and another expert said the rules are “straightforward
and easy to understand”. The rules with the highest average scores are
shown in Fig. 4. All the rules with the lowest (< 2) average scores are
shown in Table 3.

Table 3. This table shows the five rules of the lowest scores. Most of the
rules of low scores are related to the names of columns.

Feature Type Score
Only one word is in the column name. Heatmap 1.3333
The column name is started with an lower case. Heatmap 1.6667
The column name is less than 5 characters. Heatmap 1.6667
No upper case is in the column name. Heatmap 1.6667
A digit is in the the column name. Scatter 1.8333

In Table 3, we conclude that most of the rules with low scores are
related to the names of columns, which also matches experts’ com-
ments, for example, “it is not suitable to use names of columns to
decide how the column should be visualized” and “hard to convince the
column name’s rule has a relationship with heatmap”. After a careful
inspection on these rules, we found that most of the rules related to
column names are highly related to the grammar or the default setting
of Plotly. Though they are useful in the prediction of visualization types
on datasets crawled from Plotly, they may not be able to convince gen-
eral users. For example, in our extracted rules, there are several rules
related to Heatmap like the number of words in the column name, the
number of characters in the column name and lack of uppercase in the
column name. They truly make sense when the datasets are from Plotly
since lots of datasets visualized by heatmaps have columns named using
few lower-case letters such as “x” or “y”. However, it is quite doubtful
if these rules can be generalized to other datasets so our participants
considered them as unreasonable rules. This type of unreasonable rules
are mainly led by the characteristic of our dataset-visualization corpus
and this issue will be further discussed in Section 6.1.2.

Feedback on Recommended Visualizations. According to experts’
feedback, our recommended visualizations are thought to be of high
quality and can lower the burden of manually creating visualizations
when exploring the dataset and designing visualizations. For example,
an expert concludes our approach as an “automated method to visualize
dataset without human intervention, which can ease the human work-
load”. In user interviews, we presented 2 recommended visualizations
for each dataset and these visualizations are separately rated by experts.
To evaluate the overall reasonable level of our recommendation on one
dataset, we use the higher score between two scores of recommended
visualizations on a dataset as the final score. The average final score
of our recommendation is 3.7944, which shows that the experts think
most of our recommended visualizations are reasonable. Detailed score
distribution of visualization types is also shown in Fig. 6. From Fig. 6,
we can learn that our approach performs well on bar, histogram, line
and scatter but performs relatively worse on box and heatmap. The
cases with the highest scores are shown in Fig. 4.

To further understand sub-optimal recommended visualizations
which are originally visualized by box plots and heatmaps, we checked
these sub-optimal cases carefully and speculated that these datasets lack
dominant features to determine their optimal visualization type and the
visualization design choice of this dataset may depend on users’ pref-
erence and analysis tasks. Fig. 5 illustrates a case which is originally
visualized by a heatmap and got a low score in our expert interview.
To better analyze this failure case, we checked experts’ preferred vi-
sualization type of this dataset in Task 3 and the results are shown in
Fig. 7. The results show that experts’ opinion on the best type of visual-
ization was quite inconsistent, which is also reflected by the entropy of
selections. The entropy values of both the best and the second best vi-
sualization types are larger than average values (entropytop1 = 1.4677,
entropytop2 = 1.6762, entropytop1

mean = 0.9868, entropytop2
mean = 1.4515).

7

https://doi.org/10.1109/TVCG.2021.3114863

(b) Raw Dataset

0 10 20 30 40 50
0

20

40

60

80 z
x

(a) Sub-optimal Recommended visualization

Fig. 5. This figure shows (a) a sub-optimal recommended visualization
identified in expert interviews and (b) the first 10 rows of its raw dataset.

To handle this kind of dataset, it is possible to further consider users’
preferences and their specific tasks in our inference method to achieve
better recommendation results, which is left as our future work.

Fig. 6. Average scores of recom-
mended visualizations. The verti-
cal lines on the top of the bars de-
note the standard deviation values.

Fig. 7. Experts’ preferred visu-
alization types of the dataset in
Fig. 5(b).

5.3.3 Comparison between Generated and Empirical Rules
One advantage of our method is that our recommendation results are
explainable through a set of extracted rules and can be easily understood
by users. So it is necessary to verify whether the extracted rules by
our approach can align well with other empirical studies. According to
our survey, Saket et al. [36] have done a crowdsourced experiment to
evaluate the effectiveness of five basic visualizations (i.e., table, line,
bar, scatter, and pie) that has a large overlap of visualization types with
our study. Therefore, we choose to compare the generated rules by
our method with the empirical rules from this study. Three out of five
general guidelines of this study [36] are related to our research:

1. Bar charts are suitable for identifying clusters;
2. Line charts are appropriate when finding correlations;
3. Scatter plots should be used to find anomalies.

We compare the rules above with our generated rules as follows:
Rule 1. The first rule above suggests that bar is the most effective

visualization type to find clusters. Among all the data features defined
in our approach, entropy is the feature that is more related to clusters. A
larger entropy indicates that the data in the column is more disordered,
meaning that the data probably does not have obvious clusters. Using
the method described in Section 4.4, we generated rules which map
the value of entropy to three visualization types (i.e., bar, line, scatter).
The reason why only three visualization types are discussed is that
the other three types of visualizations (i.e., box, heatmap, histogram)
are not discussed in [36]. The normalized scores of those rules are
shown in Fig. 8(a). From the figure, we can notice that, among the three
visualization types, bar is the best choice when entropy is low. Then
along with the growth of entropy, scatter becomes the best choice and
finally, line becomes the top choice among these three visualization
types. Since a smaller entropy indicates more obvious clusters, our
generated rule actually suggests that bar should be recommended when
obvious clusters exist, which aligns well with Rule 1 of the prior study.

Rule 2. The second rule has been discussed in Section 5.3.1. This
rule implies that there should be at least two data columns in the dataset
when recommending a line chart, as correlation is defined for two
variables. Such an idea is reflected in our extracted rule in Fig. 4, i.e.,

“the column is not the only column in the dataset→ line”.
Rule 3. According to our learned rules shown in Fig. 8(b), when

there are outliers, scatter is always the most preferred visualization
type among three common visualization types (i.e., bar, line and scat-
ter), which is indicated by the highest normalized scores. Thus, the
generated rules by KG4Vis also perfectly align with Rule 3.

Fig. 8. The two heatmaps show the normalized scores of rules about (a)
entropy value and (b) outlier existence. Both heatmaps share the same
y-axis and the same color scale. A higher score and a darker color mean
the visualization type is more preferred. The values on the horizontal
axis of (a) denote intervals of entropy values while the values on the
horizontal axis of (b) represent different criteria of outlier detection.

In summary, the above observations confirm that KG4Vis can extract
reasonable rules that match empirical visualization guidelines.

6 DISCUSSION

In this section, we summarize the lessons we learned during the devel-
opment of KG4Vis and discuss the limitations of our approach.

6.1 Lessons
By modeling the relation between data features and effective visualiza-
tions, we have learned many lessons from building knowledge graphs
for visualization recommendation.

6.1.1 Knowledge Graph for Visualizations
Knowledge graph aims to build a structured form of human knowledge
and has drawn great research attention from both the artificial intelli-
gence (AI) research community and the industry [17, 20, 43]. However,
little research has been done on building knowledge graphs for model-
ing the visualization design knowledge and common practices in real
visualization applications. Our work is the first study along this direc-
tion. Two key steps have been crucial to the construction of knowledge
graphs for visualization, i.e., KG construction and embedding learning.

Entity Construction. Entity construction in this paper aims to cre-
ate entities to delineate continuous data features, which is intrinsically
required by the structure of knowledge graphs. Those categorical data
features (e.g., data attribute types) can be directly regarded as entities.
But for data features with a continuous value, it is necessary to dis-
cretize them, so that they can be represented as entities which describe
specific characteristics of a data feature, as discussed in Section 4.2. We
employ the MDLP technique for the discretization of continuous data
features, as it collectively considers both the distribution of each data
feature and their overall correspondence with different visualization
types. Before using MDLP, we also explored other techniques such
as KMeans for feature discretization. But KMeans considers only the
distribution of each individual feature, resulting in an inferior recom-
mendation performance than MDLP. Thus, MDLP is finally chosen in
our approach. Other advanced discretization techniques can be further
explored, which, however, is beyond the major focus of this paper.

Embedding Learning. When developing KG4Vis, we have consid-
ered three types of embedding learning techniques including TransE,
TransE-adv and RotatE and finally adopted TransE-adv. The reason
why these three methods are considered is that these methods are widely
recognized, efficient and intuitive. Compared with other models like

8

© 2021 IEEE. This is the author’s version of the article that has been published in IEEE Transactions on Visualization and
Computer Graphics. The final version of this record is available at: 10.1109/TVCG.2021.3114863

TransR [25] and RESCAL [32], these three models have lower time
and space complexity [43]. Also, their methods of modeling relations
are intuitive. They model relations between entities as translation or
rotation in the space. This can help users better interpret the learned
embeddings and generated rules.

6.1.2 Data-driven Visualization Recommendation

Similar to the ML-based methods for visualization recommendation [13,
19], KG4Vis also learns from existing visualization examples and does
not require users to manually specify a list of visualization rules. Our
evaluations above have demonstrated the usefulness and effectiveness
of KG4Vis. It benefits from two main perspectives and can be further
improved: the corpus of dataset-visualization pairs and explainability.
We will also further clarify its pros and cons compared with other
visualization recommendation approaches in this section.

Corpus. KG4Vis is a data-driven approach for visualization rec-
ommendation, which intrinsically depends on dataset-visualization
pairs. KG4Vis is built on the VizML corpus [19] to construct
knowledge graphs for visualizations. In the past few years, there
has been an increasing number of open-sourced visualization cor-
pora [6–8, 11, 19, 33, 55]. These visualization corpora have made
data-driven visualization recommendations or automated visualization
designs feasible. On the other hand, we also noticed that these corpora
suffer from some drawbacks, including the dependence on specific
visualization grammar and limited visualization types, for example, the
VizML corpus [19] and the Vega-Lite corpus [33]. More high-quality
corpora with diverse visualization examples will further benefit the
data-driven approaches for visualization recommendation.

Explainability. The visualization recommendations by KG4Vis can
be explained by a set of rules, which is highly appreciated by users as
shown in our user study. These rules explicitly inform users of common
visualization practices and are helpful for users without a background
of visualization to know why specific visualizations are recommended
for a given dataset. Meanwhile, we also noticed two important issue
within those rules that may hinder them from quickly understanding
the rules: the feature complexity and the number of rule conditions.
First, some data features are not that straightforward to general users
who may have no knowledge of some data features. For example, our
data features include the moments1 of the distribution of a data column.
The moments are used to describe the shape of data distribution and are
widely applied in visualization recommendation approaches [10, 19].
However, the detailed statistical meaning of moments may be unclear
to some users and the related rules may confuse them. Thus, it may be
necessary to strike a balance between expressiveness and intuitiveness
when choosing data features. Also, how to present the rules to users in
an automatic and more understandable way is worth further exploration.

Second, the number of conditions in one rule can also affect the intu-
itiveness and expressiveness of rules. A rule with multiple conditions is
more expressive but less understandable for general users. Meanwhile,
a rule with only one condition is more straightforward but not sufficient
to capture the characteristics of data columns, negatively affecting the
visualization recommendation. To address this issue, we have proposed
the approach described in Section 4.4 to consider multiple conditions
comprehensively by aggregating all the valid one-condition rules and
further recommend visualization design choices. With this approach,
we are able to present users with understandable rules with one condi-
tion and also guarantee an effective visualization recommendation.

Pros and Cons. Compared with existing rule-based and ML-based
visualization recommendation methods, KG4Vis has its pros and cons.
Compared with the rule-based methods (e.g., APT [27], Show Me [28]),
KG4Vis is also explainable, but has better extendability, since KG4Vis
can derive rules automatically from an existing corpus of dataset-
visualization pairs. Meanwhile, the corresponding limitation of KG4Vis
is that the quality and coverage of the rules depend on the dataset-
visualization corpus, as discussed previously. Similar to other ML-
based methods (e.g., Data2Vis [13], VizML [19]), KG4Vis can also
achieve data-driven and real-time (average time is 0.07s per dataset)

1https://en.wikipedia.org/wiki/Moment (mathematics)

visualization recommendation for a new dataset. Furthermore, it guar-
antees the explainability of the recommendation by utilizing the derived
rules. However, the performance of KG4Vis is slightly lower than the
neural network used in VizML [19] (MR of the visualization type is
1.7755), which can be further improved. The major reason may be that
KG4Vis does not delineate non-linear relations between data features
and design choices as well as neural networks.

6.2 Limitations

Our evaluations in Section 5 have demonstrated the effectiveness of
KG4Vis. However, it is not without limitations.

Limited Visualization Design Choices. For visualization design
choices, we mainly consider the visualization types and the arrangement
of x-/y-axes. However, there are more advanced visualization design
choices when making charts, for example, the ratio of the chart and the
usage of color. The major reason why we do not consider these design
choices is as below. Some advanced design choices such as the usage
of colors require more professional knowledge [56], which may not
be able to be learned in the current corpus. For example, according
to our observation, most of the visualizations in our corpus do not
define colors explicitly and only use the default color scale of Plotly. To
address this issue, some corpora containing other design choices can be
used to augment the current KG. The KG used in KG4Vis can be easily
extended by connecting the entities of data features, design choices
and data columns. But when more data features and design choices are
introduced, the number of triplets in the KG will grow linearly and a
longer training time should be expected.

Evaluations. Though we have conducted extensive evaluations
for our methods, one limitation of our evaluations is that we conduct
interviews with only 12 experts. However, it is not very feasible to
conduct our interviews at a larger scale, for example, using Amazon
MTurk. The main reason is that participants are asked to verify the
correctness of our generated rules, which requires that the participants
should have enough knowledge in visualization design to judge the
rules. Thus, we believe that this task is not suitable for MTurk workers,
as they are not necessarily visualization experts.

7 CONCLUSION AND FUTURE WORK

We propose KG4Vis, a knowledge graph (KG)-based approach to
achieve automated and explainable visualization recommendation,
which can effectively capture the visualization knowledge from dataset-
visualization pairs and provide users with meaningful rules to help
them understand the visualization recommendation results. KG4Vis
consists of four key modules: feature extraction, KG construction, em-
bedding learning and embedding-based inference. First, expressive
data features are extracted for dataset-visualization pairs. Then, we
build a KG with three types of nodes, i.e., data features, data columns
and visualization design choices. Further, TransE-adv is employed to
learn the embeddings of entities and relations. Based on the learned
embeddings, we finally propose an inference method that can recom-
mend visualizations for new datasets and generate visualization rules
for explaining the recommendation results. We conducted extensive
evaluations to demonstrate the effectiveness of KG4Vis, including case
studies, expert interviews and comparisons between the generated rules
by our approach and empirical rules from a prior study.

In future work, we plan to explore how to incorporate cross-column
features in our KG without increasing the need for computational power.
Also, we would like to further investigate how to incorporate different
user requirements and preferences to achieve personalized visualization
recommendations to different users. Furthermore, it will be interest-
ing to extend the proposed KG-based visualization recommendation
approach to other types of visualizations such as infographics.

ACKNOWLEDGMENTS

This research was supported by the Singapore Ministry of Education
(MOE) Academic Research Fund (AcRF) Tier 1 grant (Grant number:
20-C220-SMU-011). We would like to thank the experts in our expert
interviews and anonymous reviewers for their feedback.

9

https://doi.org/10.1109/TVCG.2021.3114863
https://en.wikipedia.org/wiki/Moment_(mathematics)

REFERENCES

[1] D. H. Ackley, G. E. Hinton, and T. J. Sejnowski. A learning algorithm for
boltzmann machines. Cognitive Science, 9(1):147–169, 1985.

[2] J. Bertin. Semiology of Graphics - Diagrams, Networks, Maps. ESRI,
2010.

[3] A. Bordes, X. Glorot, J. Weston, and Y. Bengio. A semantic matching
energy function for learning with multi-relational data - application to
word-sense disambiguation. Machine Learning, 94(2):233–259, 2014.

[4] A. Bordes, N. Usunier, A. Garcı́a-Durán, J. Weston, and O. Yakhnenko.
Translating embeddings for modeling multi-relational data. In Proceedings
of the 27th Annual Conference on Neural Information Processing Systems
2013, pp. 2787–2795, 2013.

[5] M. Bostock, V. Ogievetsky, and J. Heer. D3 data-driven documents. IEEE
Transactions on Visualization and Computer Graphics, 17(12):2301–2309,
2011.

[6] J. Chen, M. Ling, R. Li, P. Isenberg, T. Isenberg, M. Sedlmair, T. Moller,
R. S. Laramee, H.-W. Shen, K. Wunsche, et al. Vis30k: A collection of
figures and tables from ieee visualization conference publications. IEEE
Transactions on Visualization and Computer Graphics, 2021.

[7] X. Chen, W. Zeng, Y. Lin, H. M. Al-Maneea, J. Roberts, and R. Chang.
Composition and configuration patterns in multiple-view visualizations.
IEEE Transactions on Visualization and Computer Graphics, 27(2):1514–
1524, 2021.

[8] Z. Chen, Y. Wang, Q. Wang, Y. Wang, and H. Qu. Towards automated
infographic design: Deep learning-based auto-extraction of extensible
timeline. IEEE Transactions on Visualization and Computer Graphics,
26(1):917–926, 2020.

[9] W. S. Cleveland and R. McGill. Graphical perception: Theory, experimen-
tation, and application to the development of graphical methods. Journal
of the American Statistical Association, 79(387):531–554, 1984.

[10] Ç. Demiralp, P. J. Haas, S. Parthasarathy, and T. Pedapati. Foresight:
Recommending visual insights. arXiv preprint arXiv:1707.03877, 2017.

[11] D. Deng, Y. Wu, X. Shu, M. Xu, J. Wu, and S. F. Y. Wu. Visimages: A
large-scale, high-quality image corpus in visualization publications. arXiv
preprint arXiv:2007.04584, 2020.

[12] T. Dettmers, P. Minervini, P. Stenetorp, and S. Riedel. Convolutional
2d knowledge graph embeddings. In Proceedings of the 32nd AAAI
Conference on Artificial Intelligence, pp. 1811–1818, 2018.

[13] V. Dibia and Ç. Demiralp. Data2vis: Automatic generation of data visu-
alizations using sequence-to-sequence recurrent neural networks. IEEE
Computer Graphics and Applications, 39(5):33–46, 2019.

[14] U. M. Fayyad and K. B. Irani. Multi-interval discretization of continuous-
valued attributes for classification learning. In Proceedings of the 13th
International Joint Conference on Artificial Intelligence, pp. 1022–1029,
1993.

[15] Z. Feng, H. Li, W. Zeng, S. Yang, and H. Qu. Topology density map for
urban data visualization and analysis. IEEE Transactions on Visualization
and Computer Graphics, 27(2):828–838, 2021.

[16] Q. Guo, F. Zhuang, C. Qin, H. Zhu, X. Xie, H. Xiong, and Q. He. A survey
on knowledge graph-based recommender systems. CoRR, abs/2003.00911,
2020.

[17] A. Hogan, E. Blomqvist, M. Cochez, C. d’Amato, G. de Melo, C. Gutier-
rez, J. E. L. Gayo, S. Kirrane, S. Neumaier, A. Polleres, et al. Knowledge
graphs. arXiv preprint arXiv:2003.02320, 2020.

[18] F. Hohman, M. Kahng, R. Pienta, and D. H. Chau. Visual analytics in deep
learning: An interrogative survey for the next frontiers. IEEE Transactions
on Visualization and Computer Graphics, 25(8):2674–2693, 2018.

[19] K. Z. Hu, M. A. Bakker, S. Li, T. Kraska, and C. A. Hidalgo. Vizml: A ma-
chine learning approach to visualization recommendation. In Proceedings
of the 2019 CHI Conference on Human Factors in Computing Systems, pp.
1–12, 2019.

[20] S. Ji, S. Pan, E. Cambria, P. Marttinen, and P. S. Yu. A survey on
knowledge graphs: Representation, acquisition and applications. CoRR,
abs/2002.00388, 2020.

[21] Y. Kim and J. Heer. Assessing effects of task and data distribution on the
effectiveness of visual encodings. Computer Graphics Forum, 37(3):157–
167, 2018.

[22] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. In
Proceedings of the 3rd International Conference on Learning Representa-
tions, 2015.

[23] H. Li, M. Xu, Y. Wang, H. Wei, and H. Qu. A visual analytics approach to
facilitate the proctoring of online exams. In Proceedings of the 2021 CHI
Conference on Human Factors in Computing Systems, pp. 1–17, 2021.

[24] B. Y. Lin, X. Chen, J. Chen, and X. Ren. Kagnet: Knowledge-aware
graph networks for commonsense reasoning. In Proceedings of the 2019
Conference on Empirical Methods in Natural Language Processing and
the 9th International Joint Conference on Natural Language Processing,
pp. 2829–2839, 2019.

[25] Y. Lin, Z. Liu, M. Sun, Y. Liu, and X. Zhu. Learning entity and relation
embeddings for knowledge graph completion. In Proceedings of the 29th
AAAI Conference on Artificial Intelligence, pp. 2181–2187, 2015.

[26] Y. Luo, X. Qin, N. Tang, and G. Li. Deepeye: Towards automatic data
visualization. In Proceedings of the 34th IEEE International Conference
on Data Engineering, pp. 101–112, 2018.

[27] J. D. Mackinlay. Automating the design of graphical presentations of
relational information. ACM Transactions on Graphics, 5(2):110–141,
1986.

[28] J. D. Mackinlay, P. Hanrahan, and C. Stolte. Show me: Automatic pre-
sentation for visual analysis. IEEE Transactions on Visualization and
Computer Graphics, 13(6):1137–1144, 2007.

[29] Y. Ming, H. Qu, and E. Bertini. Rulematrix: Visualizing and understanding
classifiers with rules. IEEE Transactions on Visualization and Computer
Graphics, 25(1):342–352, 2019.

[30] D. Moritz, C. Wang, G. L. Nelson, H. Lin, A. M. Smith, B. Howe, and
J. Heer. Formalizing visualization design knowledge as constraints: Ac-
tionable and extensible models in draco. IEEE Transactions on Visualiza-
tion and Computer Graphics, 25(1):438–448, 2019.

[31] T. Munzner. Visualization analysis and design. CRC press, 2014.
[32] M. Nickel, V. Tresp, and H. Kriegel. A three-way model for collective

learning on multi-relational data. In Proceedings of the 28th International
Conference on Machine Learning, pp. 809–816, 2011.

[33] J. Poco and J. Heer. Reverse-engineering visualizations: Recovering visual
encodings from chart images. Computer Graphics Forum, 36(3):353–363,
2017.

[34] X. Qian, R. A. Rossi, F. Du, S. Kim, E. Koh, S. Malik, T. Y. Lee, and
J. Chan. Ml-based visualization recommendation: Learning to recommend
visualizations from data. CoRR, abs/2009.12316, 2020.

[35] S. F. Roth, J. Kolojejchick, J. Mattis, and J. Goldstein. Interactive graphic
design using automatic presentation knowledge. In Proceedings of the
1994 CHI Conference on Human Factors in Computing Systems, pp. 112–
117, 1994.

[36] B. Saket, A. Endert, and Ç. Demiralp. Task-based effectiveness of basic vi-
sualizations. IEEE Transactions on Visualization and Computer Graphics,
25(7):2505–2512, 2019.

[37] A. Satyanarayan, R. Russell, J. Hoffswell, and J. Heer. Reactive vega: A
streaming dataflow architecture for declarative interactive visualization.
IEEE Transactions on Visualization and Computer Graphics, 22(1):659–
668, 2015.

[38] Z. Sun, Z. Deng, J. Nie, and J. Tang. Rotate: Knowledge graph embed-
ding by relational rotation in complex space. In Proceedings of the 7th
International Conference on Learning Representations, 2019.

[39] K. W. Tsang, H. Li, F. M. Lam, Y. Mu, Y. Wang, and H. Qu. Tradao: A
visual analytics system for trading algorithm optimization. In Proceedings
of the 2020 IEEE Visualization Conference, pp. 61–65, 2020.

[40] M. Vartak, S. Rahman, S. Madden, A. Parameswaran, and N. Polyzotis.
Seedb: Efficient data-driven visualization recommendations to support
visual analytics. In Proceedings of the VLDB Endowment, vol. 8, p.
2182–2193, 2015.

[41] H. Wang, F. Zhang, J. Wang, M. Zhao, W. Li, X. Xie, and M. Guo.
Ripplenet: Propagating user preferences on the knowledge graph for
recommender systems. In Proceedings of the 27th ACM International
Conference on Information and Knowledge Management, pp. 417–426,
2018.

[42] Q. Wang, Z. Chen, Y. Wang, and H. Qu. Applying machine learning
advances to data visualization: A survey on ml4vis. arXiv preprint
arXiv:2012.00467, 2020.

[43] Q. Wang, Z. Mao, B. Wang, and L. Guo. Knowledge graph embedding: A
survey of approaches and applications. IEEE Transactions on Knowledge
and Data Engineering, 29(12):2724–2743, 2017.

[44] X. Wang, X. He, Y. Cao, M. Liu, and T. Chua. KGAT: knowledge graph
attention network for recommendation. In Proceedings of the 25th ACM
SIGKDD International Conference on Knowledge Discovery & Data Min-
ing, pp. 950–958, 2019.

[45] Y. Wang, Z. Jin, Q. Wang, W. Cui, T. Ma, and H. Qu. Deepdrawing: A deep
learning approach to graph drawing. IEEE Transactions on Visualization
and Computer Graphics, 26(1):676–686, 2019.

10

© 2021 IEEE. This is the author’s version of the article that has been published in IEEE Transactions on Visualization and
Computer Graphics. The final version of this record is available at: 10.1109/TVCG.2021.3114863

[46] Z. Wang, J. Zhang, J. Feng, and Z. Chen. Knowledge graph embedding by
translating on hyperplanes. In Proceedings of the 28th AAAI Conference
on Artificial Intelligence, pp. 1112–1119, 2014.

[47] M. O. Ward, G. Grinstein, and D. Keim. Interactive data visualization:
foundations, techniques, and applications. CRC Press, 2010.

[48] H. Wickham. A layered grammar of graphics. Journal of Computational
and Graphical Statistics, 19(1):3–28, 2010.

[49] K. Wongsuphasawat, D. Moritz, A. Anand, J. Mackinlay, B. Howe, and
J. Heer. Voyager: Exploratory analysis via faceted browsing of visualiza-
tion recommendations. IEEE Transactions on Visualization and Computer
Graphics, 22(1):649–658, 2015.

[50] K. Wongsuphasawat, Z. Qu, D. Moritz, R. Chang, F. Ouk, A. Anand,
J. D. Mackinlay, B. Howe, and J. Heer. Voyager 2: Augmenting visual
analysis with partial view specifications. In Proceedings of the 2017 CHI
Conference on Human Factors in Computing Systems, pp. 2648–2659,
2017.

[51] A. Wu, W. Tong, T. Dwyer, B. Lee, P. Isenberg, and H. Qu. Mobilevisfixer:
Tailoring web visualizations for mobile phones leveraging an explainable
reinforcement learning framework. IEEE Transactions on Visualization
and Computer Graphics, 27(2):464–474, 2021.

[52] Y. Xian, Z. Fu, S. Muthukrishnan, G. de Melo, and Y. Zhang. Rein-
forcement knowledge graph reasoning for explainable recommendation.
In Proceedings of the 42nd International ACM SIGIR Conference on
Research and Development in Information Retrieval, pp. 285–294, 2019.

[53] B. Yang, W. Yih, X. He, J. Gao, and L. Deng. Embedding entities and
relations for learning and inference in knowledge bases. In Proceedings
of the 3rd International Conference on Learning Representations, 2015.

[54] Y. Ye, X. Wang, J. Yao, K. Jia, J. Zhou, Y. Xiao, and H. Yang. Bayes em-
bedding (BEM): refining representation by integrating knowledge graphs
and behavior-specific networks. In Proceedings of the 28th ACM Inter-
national Conference on Information and Knowledge Management, pp.
679–688, 2019.

[55] L.-P. Yuan, W. Zeng, S. Fu, Z. Zeng, H. Li, C.-W. Fu, and H. Qu. Deep
colormap extraction from visualizations. arXiv preprint arXiv:2103.00741,
2021.

[56] L.-P. Yuan, Z. Zhou, J. Zhao, Y. Guo, F. Du, and H. Qu. Infocolorizer:
Interactive recommendation of color palettes for infographics. arXiv
preprint arXiv:2102.02041, 2021.

[57] F. Zhang, N. J. Yuan, D. Lian, X. Xie, and W. Ma. Collaborative knowledge
base embedding for recommender systems. In Proceedings of the 22nd
ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, pp. 353–362, 2016.

[58] F. Zhao, H. Sun, L. Jin, and H. Jin. Structure-augmented knowledge graph
embedding for sparse data with rule learning. Computer Communications,
159:271–278, 2020.

[59] H. Zhao, Q. Yao, J. Li, Y. Song, and D. L. Lee. Meta-graph based recom-
mendation fusion over heterogeneous information networks. In Proceed-
ings of the 23rd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pp. 635–644, 2017.

[60] S. Zhu, G. Sun, Q. Jiang, M. Zha, and R. Liang. A survey on auto-
matic infographics and visualization recommendations. Visual Informatics,
4(3):24–40, 2020.

11

https://doi.org/10.1109/TVCG.2021.3114863

	Introduction
	Related Work
	Visualization Recommendation
	Knowledge Graph-based Recommendation
	Knowledge Graph Embedding

	Background: TransE
	Method
	Data Features and Visualization Design Choices
	Knowledge Graph Construction
	Embedding Learning
	Inference with Embeddings

	Evaluation
	Evaluation Setup
	Quantitative Evaluation
	Qualitative Evaluation
	Case Study
	Expert Interviews
	Comparison between Generated and Empirical Rules

	Discussion
	Lessons
	Knowledge Graph for Visualizations
	Data-driven Visualization Recommendation

	Limitations

	Conclusion and Future Work

